Your Signature _____

Instructions:

(a) Please write your name on every page.

(b) Maximum time is 2 hours. Please stop writing when you are asked to do so.

(c) You may use any result proved in class. When using a result, please state the result precisely.

(d) Do not use any results from homework assignments.

(e) Provide adequate justification for answers to the questions below.

1.	(15)	
2.	(15)	
3.	(20)	
Total.	(50)	

Score

1. (a) Evaluate the Riemann integral:

$$\int_0^1 \sin(x) \cos(x) dx$$

(b) Show that the answer from above is the same as :-

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \sin \frac{i}{n} \cos \frac{i}{n}$$

2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = x_1^2 - x_1 x_2$$
 and $g(x) = \begin{cases} 1 & x_1^2 \le x_2 \text{ or } x_2 < 0 \\ 0 & \text{otherwise.} \end{cases}$

Let $u \in \mathbb{R}^2$. Find $D_u f(0)$ and $D_u g(0)$ (if they exist).

3. Decide whether the following statements are true or false:

- (a) Let $g : [a, b] \to \mathbb{R}$. If g is Riemann integrable on [c, b] for all $c \in (a, b)$ then g is Riemann integrable on [a, b].
- (b) Let $f : \mathbb{R}^2 \to \mathbb{R}$, be given by

$$f(x) = \begin{cases} \frac{x_1^2 x_2}{\sqrt{x_1^4 + x_2^4}} & x \neq 0\\ 0 & x = 0. \end{cases}$$

Then,

- (i) f has all directional derivatives at 0
- (ii) f is continuous at 0
- (iii) f is differentiable at 0